

BECAUSE RIGHT CHOICES MATTER™

Emerging Trends in Grinding of Materials

K. Philip Varghese, Ph.D.

Group Leader, Advanced Application Engineering

Agenda

- Introduction (Company and Presenter)
- Emerging Materials: What and Why?
- Grinding Processes to be covered
 - Surface grinding (y-TiAl)
 - Creep-feed grinding (γ-TiAl, IN718)
 - Large Diameter Disk Slotting (IN718)
 - Face grinding (IN718)
 - Belt polishing (IN718)
 - Gear grinding from solid (8620, 4140)
- Abrasives technology to be covered (Bonded, Super Abrasives, and Coated products)
- Summary
- Questions/Discussions

Agenda

Introduction (Company and Presenter)

Introduction - Saint-Gobain Abrasives

A portfolio of products that offer powerful, precise and user friendly abrasive solutions for every market and for every step of the abrasive process...

- Bonded abrasives
- >> Coated abrasives
- >> Thin wheels
- >> Superabrasives
- Construction Products

...Enabling our customers to shape and surfacefinish all types of materials even in the most complex and challenging applications, from DIY home improvement to highly technical precision engineering.

Introduction - Saint-Gobain Abrasives

About 300 patents filed by the Sector each year

About 2/3 of the Group's R&D spending 2,100 researchers work for the Sector, with 2/3 in multi-business centers

Introduction - SGA Grinding Technology Centers (GTC)

Four Locations:

- Higgins Grinding Technology Center (HGTC) Northborough / Massachusetts/USA
- European Grinding Technology Center (EGTC) Norderstedt / Germany
- Saint Gobain Research India (SGRI) Chennai / India
- China Grinding Technology Center (CGTC) Shanghai / China

Introduction - Higgins Grinding Technology Center (HGTC)

Worcester (1993-2011)

Northborough (2011-Present)

Mission:

- To the advancement of grinding technology and abrasive products.
- To the development of grinding systems with maximum value to our customers.

Introduction – Speaker (Dr. K. Philip Varghese)

Education

- 2000 B.E. in Production Engineering
- 2003 M.S. in Mechanical Engineering
- 2008 Ph.D. in Mechanical Engineering

CR Foundation

2008 – 2011: Chief Scientific Officer

Saint-Gobain Abrasives/Norton

2011 – Current: Group Leader, Advanced Application Engineering

Agenda

- Introduction (Company and Presenter)
- Emerging Materials: What and Why?

Grinding Titanium Aluminides (y-TiAl)

- Low density, titanium aluminides based on Ti₃Al and TiAl for applications in
 - advanced aerospace engine components (latter stages of the compressor or turbine sections), airframe components
 - automotive valves and turbochargers.
- The γ-TiAl phase apparently remains ordered upto its melting point of approximately 1450 °C (2640 °F).
- γ-TiAl can be processed by conventional methods, including casting, ingot metallurgy, and powder metallurgy.
- General Electric certified and implemented TiAl in the new GEnx-1B engine for the Boeing 787 Dreamliner that entered service in 2011.

Source: F.C. Campbell, Lightweight Materials – Understanding the Basics

Grinding Titanium Aluminides (γ-TiAl)

Traditional Grinding Solution

- Using Vitrified SiC wheels
 - High purity, very brittle, green silicon carbide abrasives, held using a dedicated vitrified bond
 - Lesser loading/capping than Alox wheels
 - High firability of SiC helps helps to lower threshold power/forces, allows cooler cutting (limit heat damage risk)

CRACKING IN A COMPONENT USING LIQUID DYE PENETRANT

Challenges

- Loading of grinding wheels
- Parts susceptible to burn
- Parts susceptible to cracking

Agenda

- Introduction (Company and Presenter)
- Emerging Materials: What and Why?
- Grinding Processes to be covered
 - Surface grinding (γ-TiAl)

Surface Grinding y-TiAl with SiC wheels

Wheel List
SiC - E24
SiC - G12
SiC - G24
SiC - 18
SiC - I10
SiC - L8

- Wheel travels left to right (climb/downcut)
- Grinds performed in sets of 3, part inspected between sets

2" grind length

Test Conditions & Measurements

	Elb Brilliant						
Machine	Mode: Slot Grinding						
	Coolant: WS						
Material	48-2-2 γ TiAl						
	DOC: 0.006, .012 , 0.018 in						
Operational	Table Speed: 50 to 200 ipm						
Parameters	Vs: 30 m/s						
	Grind Length: 2 in						
	# passes per slot: up to 18						
0	Power, forces						
	Corner radius (graphite coupons)						
weasurement	Surface roughness (Ra, Rz, Wt)						
	BPR Diamond Roll						
Dressing	Dress Comp: 10 uin/rev						
Conditions Plunge Rate: 0.0005" DOC for 20 pass							
	Speed Ratio: +0.8						

Workpiece schematic

SIDE

5

1 2 3 4

Results: Power, Force vs. Time Behavior

- Power & forces climb rapidly after dressing as function of pass #
- Wheel faces & bulk porosity observed to be free of significant loading
- Metal adhesion / capping observed on grain tips

Results: Effect of operational parameters on damage

• At constant MRR', material damage is avoided at low DOC, high table speeds

Surface Grinding y-TiAl with Superabrasives

Superabrasive Wheel List
EP 60/80# Diamond
EP 100/120# Diamond
EP 60/80# cBN
EP 100/120# cBN

- Wheel travels left to right (climb/downcut)
- Grinds performed in sets of 1, part inspected after each grind

2" grind length

Results: Power, Force vs. Time Behavior

- cBN grains resulted in increasing power (and force) as a function of grind #, whereas diamond was observed to be more stable over time
- Same trend was observed at two grits sizes (60/80 & 100/120)

Results: Power, Force vs. Time Behavior

- Diamond wheels displayed lower power & specific energy compared to cBN wheels at both grit sizes (60/80 & 100/120)
- Very low threshold power observed (grit/work interaction is dominant)
 - Effect of grit size on power/threshold power also observed

Long-duration Test Comparison (y-TiAl)

Surface grinding γ-TiAl with New Paradigm wheel

Advantages of Norton Paradigm

- Easy to Profile
 - Can be profiled on the machine using Diamond rolls in both traverse and plunge dress modes:
- Up to 42% of natural porosity achievable creating a topography that lends itself to "free" cutting states.
- 100% Metal bond best suited for "pulling" heat fro Heat sensitive materials

Specific Grinding Energy Progression

Agenda

- Introduction (Company and Presenter)
- Emerging Materials: What and Why?
- Grinding Processes to be covered
 - Surface grinding (γ-TiAl)
 - Creep-feed grinding (γ-TiAl, IN718)

Creepfeed Grinding **y**-TiAl with SiC wheels

Creepfeed Wheels					
SiC – G24					
SiC – E24					

- Wheel travels left to right (climb/downcut)
- Grinds performed in sets of 1, part inspected after each grind

5" grind length

Test Parameters & Measurements

	Blohm				
Machine	Mode: Creepfeed (NCD)				
	Coolant: WS				
Material	48-2-2 γ TiAl				
Operational Parameters	DOC: 0.050 in				
	Table Speed: 6 to 24ipm				
	Vs: 30 m/s				
	Grind Length: 5 in				
	# passes per slot: up to 2				
Outpute/	Power, forces				
Measurement	Corner radius (graphite coupons)				
	Surface roughness (Ra, Rz, Wt)				
	Diamond Roller				
Dressing	Dress Comp: 80 uin/rev				
Conditions	Total stock removed: 0.060 in				
	Speed Ratio: +0.8				

Sectioned View

BECAUSE RIGH

Results: NCD Creepfeed Testing

- No wheel breakdown or part damage was observed in two passes at lower MRR's
 - Wheel breakdown observed during second pass at 0.9 in³ / min.in
 - Correlated with mild burn in the parts

Results: NCD Creepfeed Testing

- G-grade wheel showed improved corner holding and higher G-ratio relative to E-grade wheel at same MRR'
 - Dressing implications for damage vs form

Creepfeed grinding y-TiAl with New SiC wheel

CD Grinding

NCD Grinding

- No clear advantage or disadvantage in power compared to standard wheels
- New SiC wheels had lower power & threshold power
- New SiC wheels were able to reach higher MRR'

Agenda

- Introduction (Company and Presenter)
- Emerging Materials: What and Why?
- Grinding Processes to be covered
 - Surface grinding (γ-TiAl)
 - Creep-feed grinding (γ-TiAl, IN718)
 - Large Diameter Disk Slotting (IN718)

Large Diameter Disk Slotting

- Wheels Tested
 - TG280-F20 VTX2
 - 5NQX46-H16 VTX2
- V_s = 8,500 sfpm
- Material
 - IN-718
 - Two 1" thick plates stacked
- Depth of cut
 - 0.100 DOC
- Coolant
 - Oil
 - 200 psi
 - Scrubber nozzles 1,000psi
 - Bottom extinguishing nozzle 7 gpm

Product Technology & Terminology

- ABRASIVE GRAINS

s ()- вола

BOND MATERIAL

Source: US Army Handbook

TGII Extruded Grain

- Shape Long Thin Grain 8:1 Aspect ratio
 - Very low Loose Pack Density
 - High Force Necessary to Initiate Cutting
- Good Hardness and wear resistance
- Micro Fractures to Keep Grain Sharp

NQ Grain

- Shape Sharp Edges aspect ratio ~
 1:1
 - Average Loose Pack Density
 - Low Force Necessary to Initiate Cutting
- Good Hardness and wear resistance
- Micro Fractures to Keep Grain Sharp

Product Technology & Terminology

- Low Loose Pack Density with Agglomerated Fused Secondary Grain -Vortex 2
- High Adhesive Strength Vitrium
- Low Bond % Volume Vitrium

VITRIUM³ BOND BOND-PART INTERACTION

BECAUSE RIGHT (

Removal Rates

- TG280-F20 VTX2
 - 2.0 18.0 ln³/min/in
- 5NQX46-H16 VTX2
 - 1.0 7.0 ln³/min/in
- Slot Depth 0.5"
- 4 Slots per Condition to get wheel wear
- 4 Slots per Dress

- 5NQX
 - $-V_{w} = 70 \text{ ipm}$
 - Q' = 7 in³/min/in

- TG280
 - $-V_{w} = 180 \text{ ipm}$
 - Q' = 18 in³/min/in

More Recent test in Waspaloy with TG2 wheel at 7 in³/min/in yielded a G-Ratio of ~ 19

- Comparison with Slotting using ¹/₂" carbide end mills at recommended feeds and speeds
- Grinding with 5NQX46 and TG280 wheel

Milling — Carbide Endmill									
Tool	DOC	Dia	SFPM	rpm	IPT	Teeth	ipm	in³/min	
Supplier A	0.5	0.5	100	764	0.0015	4	4.6	1.15	
Supplier B	0.5	0.5	162	1238	0.002	4	9.9	2.48	
Supplier C	0.5	0.5	60	458	0.0025	4	4.6	1.15	
Supplier D	0.5	0.5	67	512	0.001	4	2.0	0.51	
Supplier E	0.5	0.5	105	802	0.0018	4	5.8	1.44	
Supplier F	0.5	0.5	200	1528	0.001	4	6.1	1.53	

Grinding								
Tool	DOC	width				ipm	in³/min	
5NQX46	0.1	0.5				70	3.50	
TG280	0.1	0.5				180	9.00	

Agenda

- Introduction (Company and Presenter)
- Emerging Materials: What and Why?

Grinding PM Ni Based Superalloys (Rene 95, Astroloy, IN-100, N-18 etc.)

• Application HPT/LPT disks

- 200-300°C range in the bore and up to 650°C in the rim
- Rotational speed > 10,000
 rpm (Mech. Stress > 1000
 MPa in the bore for take-off)
- Oxidizing/corrosive environment.

• PM Alloys vs. Cast Alloys

- Grain size is smaller (< 7 microns)
- Contains higher alloy content
- Uniform structure, homogeneous distribution of phases
- Low thermal conductivity
- Work hardening is severe
- Adhesion to tool surface

- Advanced PM Ni-Based Super Alloys
 - New engine development programmes pushing the use of newer advanced PM Ni based alloys
 - Drivers:
 - capability of significant grain size evolutions
 - metallurgical stability for long term exposures up to 750°C
 - higher creep and fatigue resistance
 - and a density lower than 8.35 g/cm³.
 - Machining solutions becoming closer to being impractical
 - Up-to 30% reductions in cutting speeds from 3rd generation (40 m/min – 28 m/min)
 - Low productivity not being able to meet existing and future demands

Agenda

- Introduction (Company and Presenter)
- Emerging Materials: What and Why?
- Grinding Processes to be covered
 - Surface grinding (γ-TiAl)
 - Creep-feed grinding (γ-TiAl, IN718)
 - Large Diameter Disk Slotting (IN718)
 - Face grinding (IN718)

• Machine: Campbell 930

- 3 linear axes and two rotary axes
- B axis Positioning only
- spindle mounted on the B-axis
- 40 Hp Spindle
- Material: IN 718
 - ~ 15" Diameter
 - ~ 0.3" stock removal

BECAUSE RIGHT CHOICES MATTER™

Side 1 — First Plunge outside 35° Surface, Second Plunge Inside 35° Surface

Inside, Outside 35° & Bottom Surfaces Roughed

Inside, Outside 35° & Bottom Surfaces Finished

Side 2 — OD Step & 45° Surface

Wheel = TGXQ' = 3.97 in³/min/in •Feed Direction Oil Coolant Specific Energy = 4.8 Hp/in³/min 45° .364 ----1.000

•

٠

٠

Outside & 45° Surfaces Roughed

Outside & 45° Surfaces Finished

Agenda

- Introduction (Company and Presenter)
- Emerging Materials: What and Why?
- Grinding Processes to be covered
 - Surface grinding (y-TiAl)
 - Creep-feed grinding (γ-TiAl, IN718)
 - Large Diameter Disk Slotting (IN718)
 - Face grinding (IN718)
 - Belt polishing (IN718)

Robotic Abrasive Applications

Abrasive media:

- Coated abrasives, such as belts, discs, flap wheels, and specialty shapes
- Nonwoven abrasives, such as wheels, belts and discs
- Abrasive brushes, such as radial wheels and cup wheels

Source: R. McNamee, The Fabricator, 2014

Robotic Abrasive Applications

Essentials for Robotic deburring/polishing

- Controlled pattern of the engineered structure allows for a consistent cut rate as well as surface finish.
- Compliant fixturing or tooling refers to the ability to control the amount of force between the workpiece and the tool
- Conformability refers to the ability of the abrasive to match, or reach, the various contours and intricacies of the workpiece.

Conventional Belt

Belt with Engineered Structure

Target Application

Polishing the airfoil surfaces of turbine engine blades or blisks

- The blades and the rotor are machined/ground from solid piece of Nibased superalloy or titanium
- Various stages have different sized blades with some less than 1"
- Finish requirement = $5-10 \mu$ -in
- Challenges
 - Tooling geometric constraints
 - Life of tooling due to size restrictions
 - Tight tolerances
 - Long process time

Fixed Abrasive Polishing

- Twin Challenges
 - part geometry and precise robotic programming to ensure maneuverability and access to all areas of interest on the part becomes critical
 - to avoid over-cutting or excess stock removal than what is desired to achieve the finish and cosmetic specifications on a component

Test Methodology

Machine: Dynabrade Benchtop Sander

Work Material: IN 718 (20 µ-in Ra)

Product Technology : Norax Engineered Abrasives

Features

- Multi-layer of erodeable structured abrasive grain
- As the belt wears, dull abrasive particles are lifted out of the belt and a new layer of sharp abrasive is exposed to the work surface
- The continuous replacement of dulled abrasive particles can result in longer belt life, higher cut rates, and a more consistent surface finish.
- A surface powder grinding aid is incorporated into this line of belts to increase initial belt aggressiveness and decrease grinding temperature.

NORaX Engineered Abrasive

Product Technology : Norax Engineered Abrasives

 Patterns and performance differences

BECAUSE RIGHT CHOICES MATT

Test Details

- The work pieces were weighed before
 and after each grind
- The contact time recorded, allowed for the stock removal rates to be calculated.
- Knowing the amount of material removed allowed for an approximate depth of cut calculation, using the contact area and the material density.
- The surface finishes were recorded before and after polishing using a profilometer and a profile scan.

Grinding Sequence for 10 piece run:

- X22 U264
- X16 U264
- X5 U254

Estimated Stock Removal (depth)

10 piece Grinding Test Data

Surface Finish Ra

Surface Finish Rz

Surface Finish Ra

- Each red dot is a Ra measurement taken from the workpieces ground in the 10 piece run
- 3 measurement taken for each piece in the perpendicular direction
- 1 measurement taken from each piece in the parallel direction BECAUSE RIGHT CHOICES MATTERTM

- 2.0 1.5 - 1.0 0.5 L 0.0

μm 2.5

Extracted 2D Profile Parameters

			Mean	Std dev	Min	Max	
Amplitude parameters - Roughness p			orofile				
	Rp	μm	0.40	0.05	0.29	0.55	
	Rv	μm	0.37	0.05	0.28	0.49	
	Rz	μm	0.77	0.09	0 60	1.01	
<	Ra	μm	0.13	0.02	0.10	0.18	>
	Rq	μm	0.17	0.02	<u> 0.13</u>	0.22	
	Amp	olitud	e parame	ters - Wavi	ness pr	ofile	
	Wp	μm	0.49	0.15	0.20	0.97	
	Wv	μm	0.45	0.12	0.19	0.76	
	Wz	μm	0.93	0.23	0.39	1.49	
	Wa	μm	0.19	0.06	0.08	0.34	
	Wq	μm	0.23	0.06	0.10	0.38	

	Measured	Ra (uin)	Ra (uin)	Ra (uin)
Part #	Surface	high	low	mean
35	Convex polished	7.1	3.9	5.1

Area Parameters

Sa	0.29	μm
Sq	0.37	μm
Sz	2.52	μm
Sp	1.36	μm
Sv	1.19	μm
St	2.55	μm

#35 Convex Polished

BECAUSE RIGHT CHOICES MATTER™

17

Part Before and After Grind

Rough Finish

X5 U254 (Part #41)

Lay Direction On Ground Parts

- In loose abrasive applications, such as chemical vibratory polishing or extrude hone, the surface finish is typically the same irrespective of the measuring direction.
- When utilizing the coarser belts the grind-lines were evident and the surface measurements in the perpendicular direction were indeed greater than measured in the parallel direction.
- The grind-lines were greatly reduced when following a sequential process with a series of belts.
- Parallel and perpendicular surface finish measures were the same showing a nondirectional lay on Inconel 718 material, very similar to a loose abrasive process.

X5 U254 Belt After Grinds

10 piece Grind

Convex X5 U254 (Concave was very similar)

Used on Concave Side

Unused

10 piece Grind

BECAUSE RIGHT CHOICES MATTER™

Workpiece Surface Temperature after Grind

BECAUSE RIGHT CHOICES MATTER™

Estimated Cycletimes

INPUTS		
	Blade	Blade
	Design 1	Design 2
Number of Blades	36	36
Blade depth (a)	1.2	2.2
Blade Width (b)	1.1	1.1
Concave side Number of passes across blade	4	8
Convex side Number of passes across blade	4	8
Concave side Number of steps to blade depth	1	2
Convex side Number of steps to blade depth	1	2
Estimated None contact time per blade (seconds)	5	5
Belt Change Time (seconds)	60	60
Number of belts: X30/X22/X16/X5	4	4
		'
OUTPUTS		
	Blade	Blade
	Design 1	Design 2
Concave Time per pass (seconds)	0.55	0.55
Convex Time per pass (seconds)	0.8	0.8
Concave Side Total time per blade (seconds)	2.2	8.8
Convex Side Total time per blade (seconds)	3.2	12.8
TOTAL TIME PER BLADE (seconds)	17.1	33.3
TOTAL TIME PER BLISK PER BELT GRIT SIZE (minutes)	10.2	20.0
TOTAL TIME PER BLISK (minutes)	41	80

Estimated Stock Removal

X30 - U264	0.00	Lin
X22 - U264	0.000	4in
X16 - U264	0.0001	2in
X5 - U254	0.0000	4in

Agenda

- Introduction (Company and Presenter)
- Emerging Materials: What and Why?
- Grinding Processes to be covered
 - Surface grinding (γ-TiAl)
 - Creep-feed grinding (γ-TiAl, IN718)
 - Large Diameter Disk Slotting (IN718)
 - Face grinding (IN718)
 - Belt polishing (IN718)
 - Gear grinding from solid (8620, 4140)

• Why?

- Quick response to Customer needs
- Elimination of tooling lead time
- Reduced tooling cost
- Reduced tooling inventory
- Competitive cycle time
- Capital Equipment Cost Avoidance

Who?

- Job Shops
- Producers of Large Gears
- Maintenance and Repair Facilities
- Gear Box Rebuilders
- Producers of Specialty Gears

• When?

- Short Lead Time
- Special Form
- Small to Medium Lot Size

Test Material: 8620

- Prior to Heat Treatment
- 3 Diametral Pitch
 - Form Depth 0.750"
- Involute Approximation
- Thickness 3"
 - Two 1.5" parts Stacked

Test Process

- Creep Feed Form Grind
 - Up and Down Grind
- Non Continuous Dress
- Castrol Variocut B27 (straight oil)
- Coolant Velocity Matches Wheel Velocity
- High Pressure Cleaning Nozzles
- Coolant Flow Guide

Key Technology Drivers

Machine Tool

- 40 HP Spindle
- 4 + 1 Axis
- 45 gpm Coolant
- Straight Oil

Abrasive Technology

- TGII Vitrium Bond Wheel
- 5NQ Agglomerated Vitrium Bond Wheel

Productivity @ 7.0 Q'

- Time per Gap ~ 52 Seconds
- Grind Time ~ 30 minutes
 ~ 35 Minutes @ 6.0 Q'

(15 & 17.5 Min per 1.5" thick Gear)

Wheel Life

- 575 Gears per Wheel TG2
 @ Q' = 6.0
- 445 Gears per Wheel NQ
 Q Q' = 6.0
- 394 Gears per Wheel TG2
 @ Q' = 7.0

Specific Grinding Energy

- Specific Grinding energy is an indication of the efficiency of a removal process.
- Traditional grinding processes typically have grinding energies 2 to 3 or more times those seen in this process

Rough Grind from Solid & Grind to Finish

Material: 4140 Through hardened to Rc 53-57

Abrasive: 5NQX60-G20VTX2

Wheel Speed: 6,400 sfpm

Depth of Cut per pass: 0.050"

Feed rate: 100 ipm

Q': 5in³/min/in

Power: 20.5 Hp/in

Whole depth: 0.640"

Face Width: 11"

G-ratio: ~100 — (less than 0.004" diametric wear/tooth with 14" wheel)

Grind time per Tooth: 115 seconds

Material: 4140 Through hardened to Rc 53-57

Abrasives: 5NQX60-G20VTX2 and TG280-G20-VTX2

Wheel Speed: 6,200 sfpm

Depth of Cut per pass: 0.003" & 0.006"

Feed rate: 300 ipm

Q': 0.9in³/min/in & 1.8in³/min/in

Power (Hp/in): <10 @ 0.003 DOC and <17 @ 0.006 DOC

Whole depth: 0.640"

Face Width: 11"

G-ratio:

At 0.003" DOC 5NQX: ~1,250 TG2: >3,000 At 0.006" DOC 5NQX: ~100 TG2: >3,000

Grind to Finish Data

New Grain Coming Soon!!

TQ grain

- Lower Threshold forces than TG2
- Cooler Cutting Action
Grinding Gears from Solid

Hobbing Parameters

- Coated HSS 2 start Hob
- Rough Axial advance Per Part Rev: 0.032"
- Number of Rough Passes: 5
- Finish Axial advance Per Part Rev: 0.020"
- Time per Rough Pass: 230 min
- Time for Finish Pass: 323 min
- Total cutting time: <u>24.5 hours</u>

Grinding Parameters

- Wheel 5NQX Vitrium Bond
- Wheel Speed 6,000 sfpm
- Roughing Passes at 2.5 in³/min/in
- Finish Passes at 1.0 in³/min/in
- Time per Tooth Rough Passes: 1.6 min
- Time per Tooth Finish Passes: 1.1 min
- Total Dress Amount per Gear: 0.58 in
- Total Dress Time per Gear: 175 min
- Total Grind & Dress Time per Gear: <u>10.9</u> <u>hours</u>

Material: 8620

- Hardness: 28-32 Rc
- Tooth Depth: 0.470"
- Tooth Length: 7"
- Number of Teeth: 175

Grinding Gears from Solid

Hobbing Parameters

- Carbide 2 start Hob
- Rough Axial advance Per Part Rev: 0.030
- Number of Rough Passes: 5
- Finish Axial advance Per Part Rev: 0.020
- Time per Rough Pass: 74 min
- Time for Finish Pass: 110min
- Total cutting time: <u>8.0 hours</u>

Grinding Parameters

- Wheel TG
- Wheel Speed 6,000 sfpm
- Roughing Passes at 1.1 & 2.2 in³/min/in
- Finish Passes at 0.25 in³/min/in
- Time per Tooth Rough Passes: 1.8 min
- Time per Tooth Finish Passes: 0.3 min
- Total Dress Time per Gear: 41.6 min
- Total Grind & Dress Time per Gear: <u>4.0</u> <u>hours</u>

Material: 4140

- Hardness: 28-32 Rc
- Tooth Depth: 0.438"
- Tooth Length: 7.25"
- Number of Teeth: 80

We are using the best abrasive technology to break traditional barriers (SGE, surface finish) and expand grinding technology and applications!!

Reshaping your world.

