Outline

1. About OPTIS
2. How does Adaptive Machining work?
3. The Benefits of Adaptive Machining
4. A Case of Adaptive Machining
5. The Future of Adaptive Machining
OPTIS is a Joint Venture between TechSolve and Castrol, combining unique capabilities that deliver transformative efficiency programs for manufacturers.

TechSolve expertise:

- One of the foremost US authorities to improve machining operations and manufacturing process
- Cincinnati, Ohio based with 40+ Engineers, PhD’s, Chemists, Master Black Belts, and Physicists
- For over 30 years, has provided organizations of all sizes with true tangible benefits rather than just advice
What We Do?

MANUFACTURING PROCESS OPTIMIZATION

Process Improvements – Not just Lean, we apply deep expertise and analytic tools to identify and eliminate manufacturing process wastes.

Machining Efficiency – We 'go inside' the machines (lath, mill, grinding) with profound application knowledge to increase cycle times, reduce scrap rates and lower operating costs.

Machine Monitoring – Our monitoring solution OptiVue™ will visualize and optimize machine performance.

SUPPLY CHAIN & PROCUREMENT SOLUTIONS

Supply Chain Development – Optimization across supplier groups to individual supplier performance.

Part Cost Reduction – We apply proprietary 'should cost' analytics and provide what is needed to optimize how a part is produced whether it is being made in-house or procured.
Machining Lab Capability

CNC machining centers
- Turning
- Milling
- Grinding
- Gun drilling
- Honing
- Additive Manufacture

Data acquisition systems
- Cutting forces (Kistler)
- Power
- Vibration
- Machine monitoring

Microscopy
- Traditional optics
- Digital microscope

Other equipment
- Hardness testing
- Surface finish measurement
- Fluid testing facility
- Tooling evaluation

Major Equipment List
- Mazak Integrex i200S Mill Turn
- Makino V55 - 3 Axis VMC w/ 20K spindle
- DMG DMU-50 - 3+2 Axis VMC w/ Siemens 840D CNC & through-spindle coolant
- DMG DMU-70 eVo Linear - 5 Axis VMC w/ Siemens 840D & 580 psi through-spindle coolant
- Hardinge Cobra 65 – 2 Axis turning center w/ Fanuc 21T & Bar Feed
- Milltrontics HMC35 - 4 Axis HMC w/ Fanuc 0iMC
- Chevalier Smart B1224II CNC Surface Grinder
- Sheffield Cordax D-8 CMM
- Kistler Milling and Drilling Dynamometers /w National Instruments data collection
- Keyence VHX Digital 3D Microscope
- Hybrid machining center, Additive & 3-axis milling

Allows OPTIS to replicate most processes without interrupting your production!
Adaptive Machining

Why, How and Case Study.
The Challenge

• Near net shape part variability - increased part-to-part differences vs. traditional parts
• Bulk Residual Stresses can lead to distortions before and after machining
• Thin Walled Parts - Tend to deflect under the clamping forces
• Misalignment plus combinations of distortions on machining fixture are common
Problem Definition

- Due to part and fixturing distortions and deviations, the cutter path generated using a CAD 3D model fails to generate the specified dimensions.

- Parts require post process re-work and added inspection time. This causes:
 - Increased cycle time
 - Lengthy delivery times
 - Lower production rates
 - Higher production costs
The Adaptive Machining Approach

A concept that represents the adaptation of the cutter path to the actual shape and position of a part in the machining space — working with a part based on how it actually exists in reality not in the virtual CAD space.

Non-Adaptive
- Actual stock surface
- CAD surface
- PART TOO THIN
- Gap due to distortion not compensated by cutter path

Adaptive
- Actual stock surface
- Adapted cutter path
- THICKNESS IN SPECS
- Gap due to distortion is compensated in the cutter path
Benefits of Adaptive Machining

Adaptive machining can compensate for part-to-part deviations and inaccurate clamping positions and can also be applied when the exact starting shape is unknown following near net shape manufacturing processes, such as casting and forging, or imprecise repair techniques, such as welding.

Benefits:

- Reduces or eliminates scrap
- Increases part quality
- Reduces cycle time
- Lowers production costs
- Shortens delivery times
Often taken for Adaptive Control

- Adaptive control systems continuously monitor the cutting conditions in real time and provide automatic cutting parameter adjustments to adapt to the dynamic changes that occur during cutting.

- A typical adaptive control system monitors the power or cutting force of a cut in real time and adjusts the feed rate in order to obtain optimized cutting conditions.
Adaptive Machining Project

Objective:
• To identify, integrate, and demonstrate a combination of commercial off the shelf (COTS) technologies that creates an Adaptive Machining capability

Challenge:
• Using new technology for 3D part geometry capture, develop a procedure for adaptive machining of composite parts

Benefits:
• First part, and every part, will meet the dimensional, tolerance, and specifications in a production environment.
Adaptive Machining (AM) approach makes use of:
- a laser and tracker system: Steinbichler’s T-Scan
- a point cloud manipulation software: Verisurf
- a procedure developed for identifying the finished workpiece top and bottom surfaces
Approach

- **Sensor system**
 - Used to measure part thickness and capture the 3D profile of the surfaces

- **Point cloud**
 - A point cloud is output by the sensor system (Steinbichler T-Scan) and is captured/imported by the metrology software (Verisurf)

- **3D Imaging & Metrology software**
 - This software package (Verisurf) is used to process the point cloud captured with the sensor system (T-Scan) to extract dimensional and position information

- **Custom program**
 - This program is calculating the position and shape of the finished surface

- **CAD/CAM**
 - This software package (MasterCAM or CATIA) is used to generate the adapted NC cutter path.
Scanning and Alignment in Verisurf

• Scanning
 – Workpiece
 – Fixture

• Alignment procedure includes:
 – Editing of the point cloud to: delete unnecessary data, trim outliers, filter remaining point cloud and select the areas necessary to generate the datum elements
 – Conduct alignment using Verisurf functions
 – Associate each point cloud to its corresponding alignment
Scanned Point Clouds to Mesh

- Create Mesh from Scanned Point Clouds – Create a 3D mesh for each of the exported analysis point clouds
- Smooth and extend mesh if necessary
- For each mesh, surfaces can be created using various functions:
 - Auto-Surface,
 - Surface Patch, and
 - Lofted Surface
- Generate CAD representations of actual surfaces
- Calculate position of finished surface
- Generate adapted cutter path using MasterCam
Procedure Refinement

Mesh based CNC cutter path; no special CNC functions used

Mesh based CNC cutter path; special CNC smoothing function used

Surface Patch based CNC cutter path; special CNC smoothing function used

Auto-Surface based CNC cutter path; special CNC smoothing function used
Demo Part - Areas Investigated
Demo Part – Verification Points

ZONE 1

ZONE 2
Fixture with Shims
Blue Ink Test
Spheres Scanning and Editing
Alignment Using Tooling Balls
Surface Point-clouds Editing
Generation of CAD Surfaces
Workpiece Points Analysis

[Image of a computer screen with a 3D model showing workpiece points analysis with color coding and metrics.]
Finished Part Surface
Machining

In-process

Machine setup
Witness Surface 1

Adaptive machining

Non - Adaptive machining
Challenges

- Precision of the T-Scan system
- Operator’s experience
- Limitations of metrology software
- Files size
- Procedure development dependent on software capabilities
Current Methodology

1. Scan fixture and workpiece

2. Point clouds
 - Clean & filter point clouds; align, mesh, and fit surfaces
 - Surfaces

3. Workpiece surface
 - Run algorithms to determine finished surface
 - Finished surface

4. Finished part surface
 - Export surface to CAM program and post adapted cutter path to the machine tool
Automation

On machine scanning/probing

Future State
The Future of Adaptive Machining

Deformation due to cutting forces

Geometric correction

Actual stock surface

Adapted cutter path

THICKNESS IN SPECs

Tool

Gap due to distortion is compensated along the cutter path

Thin wall will be pushed ‘down’, along the normal force, towards the fixture
THANK YOU!

visit us:
Castrol’s Booth N-6176
www.optis-solutions.com