Developing Integrated Mine Plans

National Stone, Sand and Gravel Association
Baltimore Convention Center
March 17, 2015

Robert (Bob) Yarkosky, PE
Robert_Yarkosky@Golder.com

Introduction

- This presentation will discuss:
 - Level of mine plans required.
 - Tasks required for the development of a mine plan for your site.
 - Informed mine planning provides sustainable management and maximizing of geological resources safely throughout the life of the quarry operation.
 - An integrated mine plan also enables ongoing reclamation of your site to meet environmental and planning permit conditions.
 - This education session will be based on real life examples from both sand & gravel and crushed stone quarries.

This Granite Quarry has been developed as a "Top-Down" quarry which has involved the mining of a large part of the hillside.
Benefits of a Robust Geological Model and Mine Plan

- Improves geological confidence to understand and manage variations in structure and quality
- Maximizes resource recovery
- Optimizes waste removal
- Enables design of pit access and ramp systems for life of quarry
- Enables production planning to achieve product blend requirements
- Allows location of facilities to be optimized
- Permits control of CAPEX and OPEX to maximize profitability
- Assists in maintaining regulatory compliance
- Provides technical support for project and/or CAPEX financing
- Provides support to sales and marketing by assuring product meets specifications
- Allows for ongoing reclamation to be planned and accomplished

Developing Integrated Mine Plans

Framing

- How well do you know your site now and in the future?
- What level of mine plan is required?
 - ~ 75% of sites there is no mine plan
 - Small, single bench deposits
 - Little or no variation in quality
 - Above water-table
 - No blasting (sand & gravel)

- Risks of having poor or no mine plan?
 - Deposit complexity
 - Variation in quality
 - Resource sterilization
 - High grading
 - Slope stability
 - Water management
 - Stripping ratio
 - Reclamation – after use
 - Change in personnel/management

- How well DO you know your site?!
Developing Integrated Mine Plans

Presentation will be divided into 2 parts:

- Determine the complexity of a Mining Plan (from BASIC to more COMPLEX)
- Case Studies

TASKS – to determine the complexity of a Mining Plan

Basic Mining Plan
- Task 1 - Desk Top Review (Gap Analysis)
- Task 2 - Site Visit

More Complex Mining Plan
- Task 3 - Geological Model
- Task 4 – Mine Plan Design
- Task 5 - Resource Estimation
- Task 6 - Mine/Quarry Development Plan - Sequencing

Note: Various Guidelines such as H&S, Environmental, Geotechnical, Permitting and EA should be consulted and ‘built into’ the quarry design and extraction/reclamation plan for your site from the start.

For example: NSSGA has produced a guide for members on presence or absence of asbestiform minerals on your sites and presents potential actions to take if such minerals are found:

[Minerals Identification and Management Guide](#)
Basic Plan - Task 1: Desk Top Review (‘Gap Analysis’)

- Review all available data
 - **Plans**
 - Base – topography, satellite, aerial, environment
 - License boundary
 - Geology – soils, overburden, bedrock
 - **Digital Files**
 - Drilling
 - Sample data
 - Survey data - mapping
 - **Reports**
 - Permit conditions (Planning – EIA)
 - Geology
 - Geophysics
 - Resource
 - Geotechnical
 - Hydrogeology - Hydrology
 - Production data

DESK TOP REVIEW REPORT – may be enough, if not go to Task 2 and so on

Basic Plan - Task 2: Site Visit

- **Geology**
 - Meet with Site personnel
 - Review drilling & sampling practices
 - View ‘core’ & sampling storage areas
 - Visit analytical laboratory
 - Collect additional information
 - Photographs
- **Geotechnical**
 - Mapping – collect field data on discontinuities
 - Discuss development planning issues and concerns
 - Photographs
- **Hydrogeology (& Hydrology)**
 - Groundwater & surface water management
 - Discuss development planning issues and concerns (drawdown, run-off, discharge)
- **Operational Procedures**
 - Discuss current design, extraction plans & practices
 - Review both fixed & mobile plant
 - Manpower
 - Pumping
 - Costs

Site Visit Report with Desk Top Review Report – Development of Basic Mining Plan
Site Visit - Existing Conditions (Basic Plan)

- Active extraction
- Plant site
- Waste

Future Extraction

Houses

300m

Base maps (including aerial photographs)
- Permit – license boundary
- Permit – license conditions
- Up to date 3D topographical survey (x,y,z)
- Geology (from Tasks 1 & 2)
 - Mapping
 - Borehole & trial pit logs and photographs
 - Sampling data (quality)
- Geophysics (e.g. ERI, Seismic Refraction, EM31) follow-up with intrusive investigation
- Hydrogeology (from Tasks 1 & 2)
 - Water-table (pumping test)
 - Watershed / Catchment size
 - Rainfall data
- Geotechnical (complete assessment) (from Tasks 1 & 2)
 - Mapping discontinuities
 - Borehole & trial pit information

ROBUST 3D GEOLOGICAL MODEL
Up to date 3D topographical survey
- Base maps
- Permit – license boundary
- Permit – license conditions (e.g. hours of operation, emission, limits, traffic, water, reclamation)
- Geological Model (from Task 3)
- Geotechnical Assessment (from Task 3)
- Hydrogeology/Hydrology (from Task 3)
- Economic factors
 - Expected production rates – market conditions
 - Stripping ratios, Haulage distances
 - Cost estimates
 - CAPEX
 - Fixed Plant & Mobile Plant
 - OPEX
 - Labor
 - Power & Fuel
 - Explosives
Complex Plan - Quarry/Pit Design

Slope angles from modelling of geotechnical mapping and borehole information

Complex Plan - Task 5: Resource Estimation

Use Geological Model (from Task 3) to produce Resource Estimation
- Up to date 3D topographical survey
- Validated drill hole database
 - Collar
 - Survey
 - Geology
 - Sample data from certified laboratory
 - SG
- Variography – (geostatistics)
- Block model

RESOURCE ESTIMATION MODEL (can be used for)
- Scoping Studies
- Feasibility Studies
- Financing Studies
- SEC Information Guide 7 / NI 43-101 / JORC Reporting
- Mergers & Acquisitions
Complex Plan - Resource Block Model Estimation

- Block Model

Complex Plan - Task 6: Quarry Plan

- 3D Layout with ramps, haul routes, benches, stockpiles, sumps, silt ponds, crusher, conveyor etc.

- Phasing sequence for mine plan (Tasks 4 & 5)

- Blending schedule for each mine plan phase
 - Stockpile management plan

- Final quarry slopes & optimal quarry limits

- Identification of new areas for extension drilling

- Progressive & final reclamation (after-use)

QUARRY DEVELOPMENT PLAN (Scheduling & Blending)
Complex Plan - Quarry Stage Design Example

Complex Plan – Mine Plan Sequencing/Phasing Example
Complex Plan - Final Quarry Design

- Reclamation planning and phasing
- Biodiversity enhancement
- Aftercare planning and vegetation establishment

Complex Plan - Final Reclamation Example
Pulling it all together

Case Studies

- Case Study 1 - Glacial Sand & Gravel for Aggregates and Ready-Mix Concrete
- Case Study 2 - Limestone for Power Station Desulfurization Material (DSM)
- Case Study 3 - Underground Quarry for Limestone Aggregate
- Case Study 4 - Limestone for Cement Kiln and Aggregate Production
Case Study 1
Sand & Gravel Quarry

Glacial Sand & Gravel for Aggregates & Ready-Mix Concrete

Glacial Sand & Gravel for Aggregates (1a)
Glacial Sand & Gravel for Aggregates (1b)

Rabbit Sand Dominant Unit
Fine Sand Dominant Unit
Sand & Gravel Dominant Unit

Glacial Sand & Gravel for Aggregates (2)

Rabbit Sand Dominant Unit
Fine Sand Dominant Unit
Sand & Gravel Dominant Unit
Glacial Sand & Gravel for Aggregates (3a)

- Site known to be part of a large complex moraine deposit
- Initial estimates of tonnage using standard drilling techniques ~ 16 million tonnes
- Operator started to excavate football field size area – silt and clay encountered – over $250k spent

Glacial Sand & Gravel for Aggregates (3b)

- Used combination of ERI lines and drilling of ‘targets’ to re-evaluate the resource
- New tonnage estimate for the site was found to be 4 million tonnes – prompted owner to start looking for new resources sooner than planned

Quote from operator of site:

“I use that 3D figure you provided as my mining plan and where you show the resource should be, it is there!”
Case Study 2
Limestone Quarry Exploration Program, Geological Model and Extraction Plan
For Power Station Flue Gas Desulfurization

<table>
<thead>
<tr>
<th>Limestone for Power Station - Objectives and Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose / Objective</td>
</tr>
<tr>
<td>- Phase 1 – Evaluate potential quarry properties, develop an exploration program and select quarry site for limestone desulfurization material (DSM) supply to the power plant</td>
</tr>
<tr>
<td>- Phase 2 – Evaluate property for feasibility-level quarry design, production plan and cost projections</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key Limestone Grade Requirements and Resource Tonnage</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Calcium Carbonate (CaCO₃) > 90.0% for DSM</td>
</tr>
<tr>
<td>- 40-year quarry life at 1 million ton per year (Mtpy)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Property Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Within reasonable proximity of the power station</td>
</tr>
<tr>
<td>- Potentially acquirable</td>
</tr>
<tr>
<td>- Reasonable expectation of permitting success</td>
</tr>
<tr>
<td>- Competitive production and capital costs</td>
</tr>
</tbody>
</table>
Phase 1 Exploration Programs
- Six potential properties
- Prioritized 4 drilling programs over 18 months
- Forty-two 4-inch boreholes using sonic drilling rig
- 555 samples analyzed for chemical and physical properties
 - Samples at nominal 5 feet lengths (adjusted for lithology)
 - Chemical analysis
 - Loss on ignition (LOI)
 - Insoluble residue
 - Rock density
 - Limestone reactivity
 - Bond Work Index (BWI)

Limestone for Power Station - Phase 1 Exploration Geology

Models created utilizing Minescape™ software

Structural Models (25-feet grid cell size)
- Surface topography using USGS Digital Elevation Model (DEM) data
- Roof and floor structure grids from down-hole core intercepts for:
 - Calcareous clay unit overlying limestone formation
 - Limestone formation

Quality Block Models
- Blocks 100 ft x 100 ft x 5 ft in height
- Limestone quality analyses interpolated into blocks for key constituents:
 - Calcium Carbonate (CaCO₃)
 - Calcium Oxide (CaO)
 - Iron Oxide (Fe₂O₃)
 - Magnesium (Mg)
 - Elemental Sulfur (S)
Limestone for Power Station - Phase 1 Results

- Preferred property
 - Highest rank and least risk
 - 600 Mt of limestone
 - 94% average CaCO$_3$

- Pit layout
 - 11 sub-pits to minimize groundwater pumping and off-site draw-down
 - 90 Mt of resource
 - 95% average CaCO$_3$

- Developed pro forma production and capital cost estimate

Phase 1 – 21 month process

Based on the Phase 1 results, client purchased preferred property and initiated Phase 2

Limestone for Power Station - Phase 2 Scope

- Conduct feasibility-level exploration and testing program to improve geological confidence
- Complete hydrogeological investigation and groundwater model
- Update geological model
- Update resource estimates
- Develop pit layouts and quarry pit designs to consider:
 - Maximization of reserves
 - Surface and sub-surface hydrological and environmental constraints

- Estimate quarry reserves
- Select equipment and estimate productivity
- Develop annual production plan schedule for a 40-year quarry life (at 1.0 Mtpy)
- Estimate limestone production and capital costs
Geological Exploration Program
- 6 sonic / 7 diamond bit core holes
- 277 samples analyzed
 - Chemical analysis
 - Loss on ignition (LOI)
 - Insoluble residue
 - Specific gravity and porosity
 - Limestone reactivity
 - Compressive strength & BWI

Hydrogeological Exploration Program
- 13 deep / 2 shallow monitoring wells & 1 pumping well
- Pumping tests and groundwater modeling

Limestone for Power Station - Phase 2 Geological Structure Model
- 31 drill holes modeled
- Structural model - 25’ x 25’ grid cell spacing
 - Topography from USGS DEM data
 - Roof and floor structure grids created from bore hole intercepts
 - Clay unit overlying limestone
 - Limestone formation
 - Overburden - topography to clay roof
 - Limestone floor marked by basal shale
- Unconsolidated overburden thickness: 15’ – 30’
- Clay thickness: 0’ – 11’
- Limestone unit thickness: 7’ – 94’
- Stripping ratio: 0.15 bcy/ton to 0.35 bcy/ton
Limestone for Power Station - Phase 2 Structural Model

- Block models developed using blocks of 50 ft x 50 ft x 1 ft in height
- 454 quality samples utilized from Phase 1 and 2 drilling programs within property
- Limestone down-hole quality analyses interpolated into blocks for key constituents:
 - CaCO₃
 - CaO
 - Fe₂O₃
 - Mg
 - S
 - Relative Density

Limestone for Power Station - Phase 2 Quality Block Model

Limestone for Power Station - Phase 2 Quarry Layout & Mining Plan Criteria

- Limiting buffers:
 - East property boundary = 250’
 - North, South, West = 100’
 - Transmission line structure = 150’ with a 20’ wide access connecting structures
- 50’ bench width at top of limestone and mid-depth
- 25° overburden slope angle
- 80° pit wall angle
- 5’ bench height
- Royalty area extents, costs and term
- Wetlands disturbance impacts
- Stripping ratio
- Pit length for face development
- Facilities and infrastructure locations
- Hydrogeological constraints

- DSM specifications:
 - CaCO₃ >= 90.0%
 - Fe₂O₃ <= 0.92%
 - CaO >= 48.5%
 - MgO <= 0.8%
 - Sulfur <= 0.3%

- Crushed DSM product size = minus ½”

- Preferred DSM size distribution:
 - 65% - 85% passing # 4 screen
 - 55% - 75% passing # 10 screen
 - 35% - 55% passing # 30 screen
 - 0% - 30% passing # 200 screen

Limestone for Power Station - Phase 2 Relative Cost Ranking & Ultimate Pit

- Developed a relative cost map to identify lowest cost reserves based on:
 - $/bcy waste stripping
 - $/ton DSM loading and hauling
 - $/acre wetland mitigation cost
 - $/ton royalty rate
 - Cost of transmission line relocation

- Ultimate quarry limits and facilities location based on:
 - Surface constraints (wetlands, transmission line, property boundary, nearby residents, access, etc.)
 - Overburden depth
 - Limestone quality
 - Hydrogeological designs (including recharge trench requirements)
 - Relative cost ranking
Limestone for Power Station - Phase 2 Pit Layout & Mining Plan

- Designed 11 sub-pits to:
 - Quantify sufficient DSM tonnage for 40-year production plan
 - Minimize impacts to off-site ground water drawdown
 - Minimize pit dewatering requirements
 - Incorporated groundwater recharge trench designs to minimize groundwater drawdown impacts to nearby residents
 - Minimize costs and delay mining progression into royalty area

- Target limestone reserve estimates of 130 Mt at an average CaCO$_3$ content of 94%

Limestone for Power Station - Phase 2 Quarry Mining Sequence

- Developed 40-year production sequence at an annual DSM rate of 1.0 Mtpy

- Quarry plan production
 - 40 Mt of limestone DSM
 - 0.30 bcy/DSM ton average stripping ratio
 - 94% average CaCO$_3$

- Estimated quarry production costs and capital requirements
Case Study 3
Underground Limestone Quarry Development Plan
For Concrete Aggregate Production

Objectives
- Define UG limestone resource through exploration, analysis, and modeling
- Design development plan to transition from surface to UG operation
- Develop UG access and layout designs
- Development plan sufficient to support regulatory permitting and zoning requirements
- Cost and capital projections of UG plan for overall business plan

Resource Tonnage Requirements
- Produce 1 Mtpy
Limestone Underground (UG) - Study Scope

- Desktop review and site visit of existing operations
- Recommended additional work needed for preliminary UG design
 - 5 core holes
 - Create geological model
 - Rock mechanics testing program for roof and pillar designs
- Create preliminary development plan to include:
 - UG layout and portal designs
 - Production methods and equipment selection
 - Preliminary roof and rib support designs
 - Preliminary ventilation designs
 - Production scheduling and staffing
 - Estimate UG operating and capital costs

Limestone Underground (UG) - Exploration Geology

- Target limestone thickness: 85’ – 100’
- 11 existing core holes in UG mine area
 - Only 1 hole achieved full penetration of target limestone unit
- 8 full-depth core holes proposed to:
 - Define limestone extent
 - Define limestone roof and floor
 - Acquire cores for rock strength analysis
- 5 core holes completed due to time and cost constraints
 - Located core holes to maximize coverage within immediate UG areas
 - Incorporate previous drilling data
Limestone Underground (UG) - *Exploration Geology*

- Model grids created using Carlson software
- Topography modeled using aerial flyover DEM data
- Limestone roof and floor grids utilized information from 16 core holes
- Quarry limits based on:
 - modeled limestone roof outcrop
 - property boundary
 - other limiting information
- Limestone quality
 - UG roof designed to coincide approximately with the low-quality cutoff horizon (top 30’)
 - Quality not modeled (outside project scope)
- Estimated in-place resources based on geological model and quarry boundary extents
Four potential hazards to UG operations identified and assessed

- Solution cavities
- Upper limestone formation replacement with shale
- Vertical joint frequency and condition
- Surface lakes
Limestone Underground (UG) - Rock Mechanics Analysis

- Rock mechanic testing and analyses conducted
 - Uniaxial Compressive Strength
 - Tensile Strength
 - Point Load Index Test

- Testing and analyses results analyzed and used for portal, roof and pillar designs

Limestone Underground (UG) - Preliminary UG Layout

- Room-and-pillar, two-bench operation
 - Top bench developed in advance of bottom bench
 - Benches interconnected in most areas of the UG operation
 - Conservative UG roof thickness of ~ 30’
 - UG floor limestone thickness of ~ 5’ (minimum)

- UG Projections / Plan Layout
 - Projections designed on 60’ by 60’ entry centerlines
 - Entry widths and pillar dimension varied by entry purpose and bench
 - Top bench entries and crosscuts 25’ high by 40’ wide
 - Bottom bench entries and crosscuts 30’ high by 35’ wide on 60-foot centers
Limestone Underground (UG) - Preliminary UG Development Plan

- Preliminary development plan included:
 - Upper and Lower bench development and UG advance
 - Design and scheduling of production unit operations
 - Pillar design
 - UG ventilation designs
 - Surface incoming power and underground power distribution design
 - Portal design
 - Portal highwall protection
 - Quarry life production scheduling
Limestone Underground (UG) - **UG Production Sequence**

Limestone Underground (UG) - **Underground Quarry Installation**

Underground Quarry Upper and Lower Bench Portals (UG layout implemented)
Case Study 4- Limestone Quarry
For Cement Kiln Production

Previous quarry operator contract terminated. Quarry owner to take over operations.

Objectives
- Transition quarry from a “short-term-gain” viewpoint into a viable long-term operation
- Maximize recovery of 7 key limestone production horizons
- Meet limestone product blending requirements
- Potential to sell some waste rock as aggregate
- Relocate crusher facility to optimal long-term location

Cement Product Tonnage Requirements
- 1.7 Mtpy – 4.0 Mtpy limestone
Limestone for Cement Kiln Production - Study Scope

- Redevelop pit to access all working benches
- Optimize ramp designs for 5-year life
- Address all haulage access, ramp and storm water drainage in pit and dumps
- Develop 5-year production plan to meet limestone production requirements from 7 benches
 - Waste rock (or potential aggregate) from upper limestone and dolomite units
 - Cement from middle and lower limestone units
- Optimize waste rock removal
- Design waste dump capacity to accommodate waste rock
- Relocate in-pit crusher for optimal long-term operation

Limestone for Cement Kiln Production - Study Deliverables

- Annual detailed operations plans including:
 - Bench access ramps
 - Waste disposal placement
 - Crusher location
 - Pit water control designs
- Annual production sequence including:
 - Waste rock tonnage by horizon
 - Limestone product tonnage and quality by horizon
Developing Integrated Mine Plans

Benefits of a Robust Geological Model and Mine Plan

- Improves geological confidence to understand and manage variations in structure and quality
- Maximizes resource recovery
- Optimizes waste removal
- Enables design of pit access and ramp systems for life of quarry
- Enables production planning to achieve product blend requirements
- Allows location of facilities to be optimized
- Assists in maintaining regulatory compliance
- Permits control of CAPEX and OPEX to maximize profitability
- Provides technical support for project and/or CAPEX financing
- Provides support to sales and marketing by assuring product meets specifications
- Allows for ongoing reclamation to be planned and accomplished