

Data Infrastructure and Management for the Digital Thread in Manufacturing

Moneer Helu and Thomas Hedberg, Jr. National Institute of Standards and Technology Gaithersburg, MD

IMTS 2016 Conference (#IMTS17) 13th September 2016

The Digital Thread

National Institute of Standards and Technology U.S. Department of Commerce

The Digital Thread

National Institute of Standards and Technology U.S. Department of Commerce

- Identification of commercial systems does not imply recommendation or endorsement by NIST
- Identified commercial systems are not necessarily the best available for the purpose

Information sharing across the digital thread can improve the overall performance of the product design and manufacturing process

Lifecycle Information Framework

IMTS 2016 Conference • Chicago • 12-15 September 2016

Hedberg, T., Barnard Feeney, A., Helu, M., Camelio, J. (2016) Towards a Lifecycle Information Framework and Technology in Manufacturing. *Journal of Computing* and Information Science in Engineering. DOI:10.1115/1.4034132

Current Challenge

- PLM solutions:
 - CAx: CAD, CAE, CAM, etc.
 - PDM
 - V&V
- Operations solutions:
 - Devices, SCADA, PLC
 - MES, MOM
 - ERP

Engineering focused;

Relatively expensive

Primarily IT;

Mixture of IT and OT; Lack of integration across control levels

Integration of heterogeneous solutions across the product lifecycle for SMEs and larger organizations

Goals:

- Reference architecture and implementation
- Rich source of data for fundamental research
- Physical infrastructure for standards and technology development
- Demonstration test cases for education

National Institute of Standards and Technology U.S. Department of Commerce

Data Collection and Aggregation

National Institute of Standards and Technology U.S. Department of Commerce

Manufacturing Data Architecture

- Designed as a four-tier architecture
- Implemented across three networks
- Provides segregated access to internal and external clients

Tier #1: Services

- Shop-floor IT and OT systems
- External sensors and equipment
- Any additional sources of data

Tier #2: Aggregation

- Aggregates and contextualizes service data
- Provides data protocol translation
- Supplies data and information structure for underlying services

Data Aggregation /

Contextualization

Tier #3: Delivery

- Processes and contextualizes data for delivery to client
- Caches content for efficient performance
- Enables further development through data analytics

Tier #4: Client

U.S. Department of Commerce

Requirements and Specifications

- General description:
 - Product functions
 - User characteristics
 - Operating environments
- Interfaces:
 - User
 - Hardware
 - Software
 - Communications

- Features:
 - VDS and QDR
 - Data curation
 - System administration
- Others:
 - Performance
 - Reliability
 - Availability
 - Security
 - Maintainability

Demo: Monitoring Mfg. Systems

National Institute of

Standards and Technology

U.S. Department of Commerce

- Simulated cycle time for one feature was 15 seconds, but measured results show actual cycle time was 80 seconds
- Feed rate mismatch affects production schedule
- Need a solution to overcome impact to scheduling

Questions to Correct Mismatch

- [Design] Can we redesign geometry to avoid the need for toolpaths with high feed discrepancies?
- [*Planning*] Can we redesign toolpath to minimize impact of machine dynamics?
- [Machining] Can we enable operator to make informed decisions?
- [Inspection] Can we use information to identify areas for more detailed measurement?

What is the correct question to answer?

How to determine correct solution?

- Goal: Determine the best course of action to remedy production scheduling issues
- <u>Need</u>: Root cause of feed mismatch
- Solution: Integrate multiple data sources from systems across the product lifecycle to determine causation using data analytics

Available Data

- Design model data in native and STEP standard format (*as designed*)
- Milling program as NC code in ISO 6983 standard format (*as planned*)
- Manufacturing execution data in MTConnect standard format (*as executed*)
- Inspection data in QIF standard format (*as inspected*)

Step 1: Present and Represent Activities

Design Data

#131=DIRECTION(' ',(1.,0.,0.)); #136=AXIS2_PLACEMENT_3D(' ',#126,#121,#131); #141=PLANE('',#136); #146=CARTESIAN_POINT(' ',(-8.361367154208E-16... #151=DIRECTION(' ',(1.087705058168E-16,1.,0.)); #156=VECTOR(' ',#151,1.); #161=LINE('',#146,#156); #166=CARTESIAN_POINT(' ',(-8.361367154208E-16... #167=VERTEX_POINT(' ',#166);

Manufacturing Data

2016-05-09T11:46:51.456188Z|path_pos|15.0998... 2016-05-09T11:46:51.608005Z|path_pos|15.0998... 2016-05-09T11:46:51.752206Z|path_pos|15.0998... 2016-05-09T11:46:52.040056Z|path_pos|15.0998... 2016-05-09T11:46:52.040278Z|Cposition|359.9848 2016-05-09T11:46:52.184104Z|Cposition|359.9847 2016-05-09T11:46:52.616003Z|path_pos|15.0998... 2016-05-09T11:46:52.616184Z|Yposition|-37.80295 2016-05-09T11:46:52.760205Z|path_pos|15.0998...

> National Institute of Standards and Technology U.S. Department of Commerce

Step 2: Apply Data Analytics

- Overlay the as designed, as planned, and as executed data
- Investigate the relationship of each "feature" across the linked data
- Determine causations and correlations of issues

Step 3: Generate Results

Feng, S. C., Bernstein, W. Z., Hedberg Jr, T., & Barnard Feeney, A. (Under Review). Towards Knowledge Management for Smart Manufacturing. *Journal of Computing and Information Science in Engineering*.

National Institute of Standards and Technology U.S. Department of Commerce

21

engineering

Step 4: Build Knowledge

- <u>Cause</u>: Machine never reached planned feed rate
 - Height of the design feature (i.e., chamfers) is small
 - Machine cannot complete acceleration to planned feed rate before completing the fabrication of the design feature
 - Design based on legacy concept and design feature not needed in this design
- <u>Correlation</u>: Design, Planning, and Program defects

- Short-term (program): Enable operator to make educated decisions to override the planned program to speed machining
- <u>Mid-term (planning)</u>: Rework production schedule and routing to compensate for longer than expected fabrication time
- Long-term (design): Redesign part to remove legacy design artifacts and optimize the design for manufacturing

Summary

- Digital thread has potential to improve overall performance of product design and manufacture
- Substantial implementation effort needed to achieve promise of digital thread
- NIST Smart Manufacturing Systems Test Bed enables development of digital thread:
 - Data available @ <u>https://smstestbed.nist.gov/</u>
 - Documentation to be released
 - Data-driven applications forthcoming

Grand Opening: MFG Day, Oct 7th

Thank you for your kind attention!

Moneer HeluThomas Hedberg, Jr.moneer.helu@nist.govthomas.hedberg@nist.gov

More information at: <u>https://smstestbed.nist.gov/</u>

To receive updates: smstestbed@nist.gov

