Designing and Providing Effective Pedestrian Entrance Control (PEC) Systems

(Turnstiles 101)

Physical Security Council

September 10, 2019
Jon Harris, PSP, CPP
Mike McGovern, PSP
Jeff Slotnick, CPP, PSP
Why we are here:

Are you presently considering the design of a turnstiles pedestrian entrance control system in the next 12 months?
TURNSTILES 101: TODAY'S DISCUSSION POINTS

- Risk Assessment in Pedestrian Entrance Control (PEC) Design
- Financial Benefits
- Types and Features of PEC’s
- Select technologies and design features
- Ideal number of Lanes
- Other criteria: UL, IP, MCBF, and warranties
- ASIS Resources Available
- Case Studies available
An important aspect of physical security design is a comprehensive risk, threat, and vulnerability assessment.

- A risk assessment helps to identify the risk(s) to be mitigated.
- Creates a risk based justification for the mitigation
- Establishes the context for funding
- Assists in the design of the risk mitigation
RETURN ON INVESTMENT (ROI)

Reallocation of resources

- Reduce coverage during off-peak hours
- Flexibility of workforce to mobilize, provide security services and respond to incidents

Optimization of convenience and control

- Increasing throughput without compromising security

Integration with existing Security infrastructure and resources

- Leverage current investments and technology
- Integrate technology with human resources
SOME TYPES OF TURNSTILES (PEC’S)

- Full Height Mechanical
- Security Portals/Revolving Doors
- Waist High Mechanical Tripod
- Pure Optical Turnstiles
- Optical with Retracting Barrier
- Optical with Swinging Glass Barrier
Mechanical Turnstiles in use (video)
Retracting Glass Optical Turnstiles in use (video)
Swing Glass Optical Turnstiles in Use (video)
SYSTEM DESIGN CONSIDERATIONS

i.e.;

Type of Barriers & Barrier Height.
Footprint Available.
Closing off surrounding area?
IP Connectivity & UL Requirements.
Satisfy Egress Requirements?
ADA Wheelchair Compatibility?
Finish: Stainless Steel or Natural materials?
Logos/Corporate Branding?
SYSTEM DESIGN CONSIDERATIONS—custom finishes & features
SYSTEM DESIGN CONSIDERATIONS
(high security environment)

- Applications
 - Banks and Insurance companies
 - Government buildings and Institutions
 - Office buildings, corporate headquarters and administrative sites
 - Sensitive sites; R&D offices, pharmaceutical buildings, Data centers and Airports

- Ideal for
 - Access control management and securing access to restricted zones

www.asisonline.org
TRANSIT SYSTEM USE CASE

Selecting the best system for the operational environment.

- Knowing the operational environment, facility culture, and risks are critical to success design and acceptance.

Use Case

- Historic facility with very old architecture
- Desire by the agency to have an open versus closed system
- High levels of vandalism from criminal activity and homelessness
- Optical turnstiles consistent with current architecture
INTEGRATION WITH AUTHENTICATION TECHNOLOGIES

Wide array of available technologies
- Standard badges, QR/Bar Codes, Biometrics, Bluetooth, etc.

Evaluate current process and technology
- Avoid ‘shiny object’ syndrome
- Master the basics

Authentication technology must match desired application
- Different personnel require different authentication (Visitor, Contractor, Employee)
- Facility type considerations (high-rise, industrial, shared work space, etc.)
Smartphone Bluetooth Reader Integration (video)
Hand Wave Identity Reader Integration (video)
Facial Identity Reader Integration (video)
DETERMINING THE NUMBER OF PASSAGE POINTS

Population
- Cost of delays
- Public, Private, Visitors or all of the above?

Security Goals
- Closed facility or open facility
- Visitor and contractor lanes
- Employee and Executive lanes

Integrated Authentication Technologies
TSA- Normal, Pre-Check, and Clear
SIMPLE METHOD FOR ESTIMATING NUMBER OF LANES (PASSAGE POINTS)

➢ A = How many cardholders at the building/campus
 ➢ Includes employees, contractors, average # of visitors

➢ Divide by 500

➢ C = ideal number of lanes to be employed
 ➢ (adjust for additional side entrances if necessary)

➢ This allows for normal in/out traffic, lunch/smoke breaks, etc.

\[
A / 500 = C
\]
UL – assures safety – both electrical and mechanical. Satisfies local jurisdiction concerns.

IP – future proofing, immediate or future tie in with company networks and information systems

MCBF – independently tested under controlled verifiable conditions – ensures life of the product.

Mfr confidence in MCBF is demonstrated by their warranty (1, 2, 3 or 5 years)
ASIS RESOURCES

Available Standards, Guidelines, and Reports

• Risk Assessment (RA)
• Security Management Standard: Physical Asset Protection (PAP)
• Facilities Physical Security Measures Guideline (FPSM)
• Crisp Report, From the Ground Up, Security for Tall Buildings
CASE STUDIES AVAILABLE

➢ YMCA
 ➢ control membership
 ➢ Improve security
 ➢ increase revenue
 ➢ Decrease hourly staffing

➢ Publishing Company HQ
 ➢ Increase security
 ➢ Improve employee experience
 ➢ More efficient use of elevators (dispatch screen built in)
 ➢ Architectural lobby enhancement
 ➢ More efficient use of security resources

➢ Major Downtown Office Tower
 ➢ Improve marketing to tenants (safe environment)
 ➢ Architectural lobby enhancement
 ➢ More efficient use of security resources
Contact for more info:
Jon Harris, CPP, PSP - jharris@guidepostsolutions.com, 612-669-7548
Mike McGovern, PSP – mmcgovern@automatic-systems.com, 610-585-7279
Jeff Slotnick, CPP, PSP - jeff.slotnick@setracon.com, 253-538-9848