## Minimum Quantity Lubrication (MQL) Benefits and Lessons Learned for Production Implementation





#### What is MQL?

- Minimum Quantity Lubrication (MQL) is just what the name implies:
  - Minimum Quantity: a very small amount of a fluid
    - "Minimum" varies depending on who you ask
    - DIN 69090 puts it up to 50 mL/hour of lubricant (1.7 oz./hour) and in exceptional cases up to 150 mL/hour (5 oz./hour)
    - Other have put the cap at 500 mL/hour (17 oz./hour)
  - Lubrication: A fluid whose primary purpose is to lubricate not cool – and so reduce the friction between a cutting tool and the work piece
- Considered a near-dry process, with less than 2 percent of the fluid adhering to the chips





#### What is MQL?

This is much less than the 30,000-60,000 mL/hour (8 to 16 gallons/hour) typically used with flood coolants!











### Why MQL?

 Three main areas of benefit: Environment-Employees-Enterprise







#### **Help The Enterprise**

- In large facilities, such as automotive production plants, MQL permits
  - Moving manufacturing cells closer together, reducing movement and transport waste.
  - Smaller cell footprints
  - Reduced cycle times
  - Lower variable costs
- Better Machine Life
  - Electronics on the machine tool controls are not adversely affected by coolant
  - · Paint not destroyed
  - Coolant related corrosion eliminated





#### Help Employee

- Health and Safety
  - Eliminates dangerous, slippery floors.
     No kitty litter or coolant mats needed
  - Improved safety in handling parts, they are not slippery
- Reduced workforce exposure to mists
- Greatly reduced dermatitis issues among machine tool operators





#### **Help Environment**

- No cutting fluid waste.
- Reduced energy and water use.
  - Can result in a 15% lifecycle cost reduction compared to conventional high-volume water based coolant.
  - Processing waste can be greatly reduced.
    - one plant halved the energy needed to produce diesel engines (elimination of pumps, recirculation units, etc.)
    - \* Cut their water requirement by 99.8%.





#### **Need to Consider Entire Ecosystem**

- Machining is a complex set of interrelated operations
- Getting the most when changing from flood to MQL means more than just switching lubricators
- Tools, machine layout, cutting parameters can all be optimized









#### **MQL Special Considerations**

- Two issues where MQL application is more process sensitive than flood coolants
  - It is important *where* the lubricant is applied
  - It is important *how much* lubricant is applied





#### **Approaches to MQL**

- Several ways to apply MQL
- Today we focus on Dual Channel Through Spindle (DCTS)
- Within a CNC, this is the best technical approach
- Requires some initial planning and effort, but is worth it







#### **Dual Channel Through Spindle?**

- **Dual Channel**: Air and oil transported separately and mixed close to workpiece
  - contrast to Single Channel where the air and oil are mixed in the applicator and the aerosol is transported
- **Through Spindle**: Same as coolant, but an extra tube is put down through the center of the spindle to carry the oil





#### **The Technical Solution**

• Rate MQL system based on STAR criteria









#### The DCTS STAR

- Dual Channel Through Spindle gets the gold star for CNC's because
  - **Simple**: No operator intervention needed to adjust or select nozzle position. In essence, nozzle is built into tool. (TS)
  - **Timely**: Low response time. Do not have to wait for changes to move though tubing and spindle (DC)
  - Accurate: MQL delivery "where" is consistent because nozzle part of tool (TS). Best "how much" accuracy since not filtering for particle size and applied right at cut (DC)
  - **Repeatable**: MQL delivery "where" is consistent because nozzle part of tool (TS). Best "how much" accuracy since no buildup of fluid inside spindle giving more repeatable delivery (DC)





# Understanding the pieces

- The Four Pieces
  - Applicator
  - Rotating Union
  - Spindle
  - Tool Holder









#### Applicator

- Delivers the air and the oil
- Two basic types used in DCTS

| Criteria | Volumetric                                                                                                                 | Time based flow                                                                                                    |
|----------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
|          | Volumetric pump moves piston to dispense the specified amount of fluid at the given rate                                   | A valve opens and closes for the amount of time needed to dispense the specified amount of fluid at the given rate |
| Simple   | <ul> <li>Fewer pieces,<br/>insensitive to fluid<br/>type. Sensitive to<br/>elasticity in system<br/>components.</li> </ul> | <ul> <li>More moving pieces.<br/>Sensitive to fluid<br/>characteristics.</li> </ul>                                |
| Timely   | Good response time since dual channel                                                                                      | Good response time since dual channel                                                                              |







#### Applicator

• Two basic types used in DCTS (cont)

| Criteria   | Volumetric                                                                                                | Time based Flow                                                                                                                                                |
|------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Volumetric pump moves to dispense<br>the specified amount of fluid at the<br>given rate                   | A valve opens and closes for the amount of time needed to dispense the specified amount of fluid at the given rate                                             |
| Accurate   | <ul> <li>Volumetric accuracy<br/>inherent to pump, can<br/>be easily monitored for<br/>change.</li> </ul> | <ul> <li>Assumes fluid properties do<br/>not change (e.g. viscosity<br/>with temp)</li> <li>Calibration based with<br/>interpolation between points</li> </ul> |
| Repeatable | Volumetric pump is very<br>repeatable and can be<br>easily monitored for<br>change.                       | Assumes fluid and mechanical properties do not change, with limited monitoring for change.                                                                     |





#### Spindle

• Spindle requires a straight shot from the rotating union to the tool holder with sufficient size in draw bar hole to allow oil tube and surrounding air flow.







#### **Rotating Union**

- Requires rotating union designed for DCTS.
- Union likely be matched to the type of applicator. The different types of applicator require different characteristics from the union to optimal performance
  - Minimize air pockets
  - Work with metering valve



Example: DEUBLIN 1109 series



Example: DEUBLIN 1109 series



Example: DEUBLIN 1129 series







#### **Tool Holder**

- MQL Insert important to avoid aerosol fluid from being centrifuged away from the shank of the tool inside the holder.
- Several solutions commercially available for HSK style holders
- Talk to Unist for recommendations on CAT style inserts







#### Outline

- MQL at Ford—overview
- Safety
- Machine tools for 2-Channel through-spindle MQL
- Processing and dimensional control
- MQL Oils
- Tooling





#### **MQL** at Ford

- Two Channel through-tool MQL is the standard (BoP) machining method for
  - Aluminum transmission prismatics
    - Converter housing
    - Valve Body
    - Case
  - Aluminum engine heads
  - Aluminum and gray iron engine blocks
  - Cast and forged crankshafts oil/cross holes and balancers







#### **MQL** at Ford

- In production since 2004
  - Livonia & Van Dyke Transmission
  - Cologne and Craiova Engine
  - Recent installations in NA, EU, India, China, Brazil
- Machine suppliers: MAG, Grob, Heller, Etxe-Tar
- System suppliers: Bielomatik 2-Channel (since 2004), UNIST Infinity (since 2017)
- Approximately 700 2-channel systems in production globally





Image source: Etxe-Tar, MAG Automotive







#### Current MQL Installations—Prismatic Aluminum Machining



#### MQL at Ford—Benefits and Challenges (2-Channel Through Tool)

- Benefits
  - Reduced operator mist exposure
  - Lower system lifecycle cost
  - Improved throughput
  - Reduced floor space
  - Reduced energy and water usage
  - Increased flexibility
- Challenges
  - HEAT
  - Machine tool design and integration
  - Dimensional control without coolant
  - Oil Effects (dosage/residue)
  - Tooling performance and cost
  - Supply base familiarity (NA)





#### Safety

- Potential hazards are:
  - Aerosol mists
  - Fire and explosion potential
- For mists (also a concern for water-based coolants)
  - Use in well ventilated area
  - For higher volume applications, enclose machines with negative internal pressure, use HEPA mist filter
  - Risks associated with mists are summarized in NIOSH 98-116 (1998)
- For fire/explosion protection (especially for AI)
  - Standard precautions for neat oil machining in lower volume applications
  - For high volume production, use dry filter with spark detection and fire suppression
    - Dry filter systems also generally provide mist filtering







## Machine Tools for Two-Channel MQL





#### **Machine Tools for Two-Channel MQL--General**

- Should be designed as a dry machine
- Steep vertical walls
- Open bed to chip drag
- Auger/gravity chutes to move chips
- Avoid protruding bolts, exposed piping and wiring, anything that can grow a "beard" of chips
  - Also applies to fixtures
- Stainless steel or specially painted internal walls to reduce oily chip adhesion











#### Machine Architectures—A Axis



- Horizontal Spindle for maintenance and untended operation (automotive standard)
- A-axis permits rotation to dump chips and suspended (upside down) machining for chip clearance



Image source: Grob





#### Machine Architectures—B Axis

- B-axis HMCs are also widely used for MQL applications
  - Often with W-axis and ram spindle
  - Good for overhead gantry loading
  - Good for deep hole drilling and internal feature boring/milling
- Same rules regarding protruding bolts exposed piping, etc. apply—B-table increases the engineering challenge
- In high feed operations, often need to account reduced compliance at top of part



Image source: MAG Automotive





# Machine Modifications For 2-Channel MQL implementation



- Integrate MQL unit
  - Mount somewhere, usually near back end of spindle
- Special rotary union and lance
  - Rotary union must be two-channel, able to run dry (w/o coolant bleed-off)
  - Lance from rotary union to toolholder must match spindle length
- Controls Integration
  - M-codes to turn MQL on/off
  - Disable coolant pressure faults





## Machining Process Design and Dimensional Control





#### **Machining Process Design and Dimensional Control**

#### Major issue is thermal expansion in the absence of coolant



 $\Delta L = \alpha L \Delta T$ 

 $\alpha$  = thermal expansion coefficient ( $\mu$ m/m/C)



- Example: manufacturing hole separation, transmission case
  - Nominal locating hole separation 40 cm
  - Aluminum part, expansion 22  $\mu\text{m/m/C}$
  - 10 C temperature variation changes hole separation by 88 µm







#### **Sources of Heat Buildup in Machined Parts**

- Ambient temperature variation (not process)
  - am to pm
  - Summer to winter
- CHIPS IN CONTACT WITH PART
  - Internal bores and features
  - Chips in drill flutes
- Roll form taps
  - Cut taps produce a chip which remove heat
  - In roll form tapping, most deformation energy goes into part
- Low speed or high flank wear processes
  - Center of drills
  - Abrasive workpiece materials
- Order of operations
  - Do high heat operations at end of cycle when possible



Chips in part after early test on RWD transmission main bore







#### **Dimensional Control Strategies—Part/Process**

- Use higher feeds in drilling to reduce heat in part
  - Minimize time in part and time for chips in flutes to contact part
- Reduce content per operation and increase number of operations to limit part heating
  - Current trend is in the opposite direction—fewer setups for quality
- Perform high heat cuts at end of operation to avoid dimensional changes in early steps







#### **Dimensional control strategies—Machine/Fixture**

- Machine Tool Design
  - Open bed, steep walls
  - Thermal isolation of some structural elements
  - No protruding screws etc. to catch chips
- Thermal compensation of machine
  - Requires machine sensors and algorithm
- Part temperature control (cooling between OPS)
  - Limit on part temperature for cycle start
  - Requires waiting periods and/or cooling tunnels, discipline
- Air tempering in plant
  - Basically a requirement for high volume aluminum parts
  - Also done for wet (non-MQL) plants







## **MQL** Oils





### **MQL Oils--Requirements**

- Oils must have high lubricating ability, since only a small amount is used
- Must be nontoxic and biodegradable, since they are released into the manufacturing environment, and not collected
- Ford specifications:
  - Viscosity between 20 and 100 mm<sup>2</sup>/s at 25 C
  - Flash point > 160 C
  - Ignition Temperature > 450 C
  - Lower explosion limit >  $20 \text{ g/m}^3$
- Requirements generally drive use of vegetable-oil based lubricants (due to biodegradability and high molecular weight)

#### **Metalworking Fluid Base Lubricants**



Representative mineral oil, vegetable oil, and synthetic ester chemical structures

Image source: Quaker Chemical





#### **MQL Oils—Synthetic Esters**

- Usually derived from vegetable oil stocks
- Relatively high molecular weight, viscosity, and flash point
- Good lubricant (due to high viscosity/MW)
- Relatively little evaporative cooling effect, increased tendency to leave residue
- Increased tendency to clog washers (due to chemical reactions with washer fluid or chip drag-in)
- In the past, recommended for applications requiring primarily lubricity (e. g. aluminum machining)
- Used for all early Ford MQL applications



# Biodegradability of oils investigated in early Japanese research

Image source: S. Suda et al, "A Synthetic Ester as an Optimal Cutting Fluid for Minimal Quantity Lubrication," CIRP Annals **51** (2002) 95–98





### **MQL Oils—Fatty Alcohols**

- Usually derived from vegetable oil stocks
- Lower molecular weight, viscosity, and flash point than synthetic esters
- Less effective lubricant
- Provides more evaporative cooling, has less tendency to leave residue on part
- In the past, recommended for applications requiring cooling as well as lubricity (e. g. cast iron machining)
- Used in recent Ford applications (since roughly 2016), can be used for both iron and aluminum parts



TU Stuttgart two-nozzle single channel system, c 1993

Image source: U. Heisel et al, "Application of minimum quantity cooling lubrication technology in cutting processes," *Prod. Eng.* **II/I** (1994) 49–54





#### MQL Oils--Dosage

- Objective is to consume oil entirely in the process—no residue on part or chips
  - No wasted oil
- Currently MQL rates are set largely by experience based on tool size (e. g. drill diameter—25-40 ml/hr for M8, etc.) and material
  - Little guidance from system suppliers and standard handbooks
- The "M" in MQL is unknown



- In wet machining, a large volume of a dilute lubricant floods the system
- In MQL, a small, targeted volume of concentrated lubricant is delivered to the cutting edge, reducing friction, buildup, and heat generation

Image source: Komet Gruppe, Handbuch Minimalmengenschmierung





#### **Consequences of High Oil Dosage**

- Oil buildup and caking in the workspace
  - Oils are biodegradable, so these are the end products of a decay process
- Residue on part
- Clogged or damaged filters in washers
- Oily chips—may need to be pressed before transport
- Dimensional errors and misloads due to chips on locators
- Damage to spindle socket due to chips trapped between taper and socket



Oil on a fixture after a 30 piece run





#### **Causes of Variation in Dosage levels**

- Lack of physical understanding and welldefined method to select oil level
- Calibration variation
- Uncontrolled variation in tooling
  - Position, condition, and size of MQL delivery ducts (coolant holes)
  - Variation in drill point grinds, especially for resharpened drills
  - Variation in tooling assemblies (transfer pipes and adjustment screws)
- Need to solve production problems for delivery
  - Increasing the oil is often the only knob to turn
  - Once turned up, oil is never turned down





Variation in coolant hole position relative to cutting edge for two nominally identical production drills





# Tooling





## Tooling

- Differences between MQL and Wet Tooling
  - Interface connection point
  - Premium materials / Premium geometry
  - Intricate internal geometries





### **MQL Toolholder Interface**





90 deg cone MQL shank interface

Toolholder used for two-channel through-tool MQL require special tooholder interfaces for:

- Proper mixing of MQL mist
- Robust oil delivery with multiple tool changes

Proper tool shank interface also required—Ford PTO uses 90 deg cone interface.

Standards:

- DIN 69090-1:2011-12—toolholder components
- DIN 69882-8, DIN 6535 Form HA—cone shank interface for shrink fit

Image sources: Bielomatik, Gühring







#### **Shank Interfaces**



- · Holes should be centered in the slot
- Slot width should not vary tool-to-tool



- · Dimensions vary with diameter
- No slot required for tools with single central coolant hole







### Taps (for Through Tool MQL delivery)

- Bottoming taps for blind holes may have a single central coolant hole exiting at the end
- Chamfer taps for through holes should have radially directed coolant channels (often 90 deg from axis) with central hole plugged
- Cut taps should have higher relief angles, higher back taper, and narrower lands than wet taps to reduce friction and heating
- Form tap thread form should be designed for MQL (lower friction)
- May need special toolholder elements to seal collet and adjust length (supplier specific)
- Torque lower than for wet tapping due to improved lubrication







### Material Requirements—Tooling Substrates for Dry/MQL machining

- Compared to wet tooling, MQL tooling is subjected to
  - Higher temperatures due to lack of coolant
  - Higher stresses due to more aggressive cycles
- In aluminum MQL, this drives the use of micrograin carbides for strength and heat resistance for drills and reamers
  - Still primarily unalloyed (ISO K) or lightly alloyed (ISO P) substrates
- For ferrous MQL, fine grain carbides are used, as well as new hardened metal (ISO H) or superalloy (ISO S) substrates

| Greatest Hardness                                    |                                                           |                                                                       |
|------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------|
| Ferrous Metals<br>(Long Chips)                       | P01 Finishing<br>P10 P20<br>P25 P30<br>P40 Roughing       | ISO P = Steel ISO M = Stainless steel ISO K = Cast iron               |
| Ferrous Metals<br>(Long or Short Chips)              | M10<br>M20<br>M30<br>M40<br>Roughing                      | N ISO N = Non-ferrous material                                        |
| Ferrous Metals<br>(Short Chips)<br>Nonferrous Metals | K01 Finishing<br>K05<br>K10<br>K20<br>K30<br>K40 Roughing | S ISO S = Heat resistant super alloys<br>H ISO H = Hardened materials |
| Greatest Toughness                                   |                                                           |                                                                       |

Traditional ISO carbide grades

New grade system from 2012 standard (ISO 513 2012)

Sources: ToolingU.com, Sandvik







### **Edge Preparations and Surface Finish**

- For aluminum, generally want:
  - Up-sharp edge
  - Uniform edge preparation across edge
  - Polished flanks—remove electrodischarge machining slag on PCD (Polycrystalline diamond) edges
  - Finest grain size (especially for PCD)
  - For drills, polish flutes to prevent chip adhesion and buildup
- For ferrous MQL
  - Generally honed edge
  - Chamfered edges used on some ferrous MQL drills
  - Uniformity of edge not as critical



50 µm honed edge on a valve seat blade







#### Internal Coolant passages for Multidiameter tools— General Rules

- Air flow is critical in MQL
- Internal coolant passages must be more carefully designed in MQL than wet machining
  - 1000 psi water overcomes most obstacles
- In principle, need larger coolant hole diameters in MQL than in wet machining
- Handbooks recommend a minimum passage diameter of 0.5 mm for two-channel MQL
- Ford experience: minimum is 0.6-0.7 mm (for straight rod, no branching)



Source: Komet







#### **Internal Coolant Passage Manufacturing Methods**



#### Extrusion

- Standard carbide rod
- Used for simple drills
- Most repeatable
- Blanks are engineered for stress



#### Perform drilling (carbide)

- Holes drilled in carbide preform prior to sintering
- More variation due to drilling variation
- Shrinkage and flaking concerns also need to be taken into account

Image Sources: Gühring, HB Carbide, Komet



EDM (steel or carbide)

- Holes machined by EDM (after sintering for WC tools)
- More variation due to EDM process







### **Oil Balancing—Multidiameter Tools**



- For multidiameter tools (cutting different diameters at different axial levels), internal passage angles and diameters must be properly chosen to ensure oil delivery to all edges
  - Standard water-based tooling not designed for compressible gas lubrication (1000 psi water overcomes most design flaws)
  - Ideally want to dose oil at each edge based on metal more oil at the front, less for clearance or countersink cuts
  - Improper balancing leads to buildup and premature tool failure









# Thank you



